

RC1 CuCr Path Forward

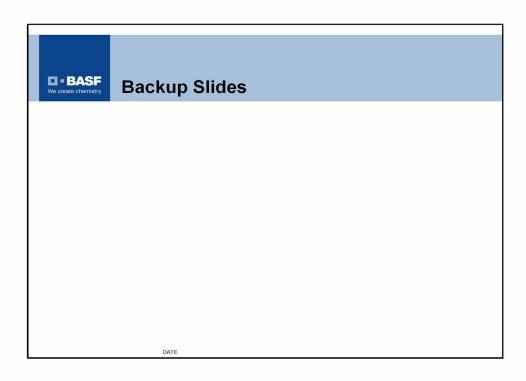
		Steady State Rate [lb/h]	Proposed Rate Limit [lb/h]	Rate Reduction
	Cu 1800 P	400		13%
	Cu 1820 P	400	350	13%
RC1	Cu 1885 P	650		46%
CuCr	Cu 1950 P	650	350	46%
	Cu 1136 P	600		42%
	Cu 0396 P	650		46%

- Permit CuCr products collectively under one rate 350 lb / h
- Administratively control nitrate content with intermediate spec on dried powder

RC2 Non-Cr Path Forward

Scenario 1

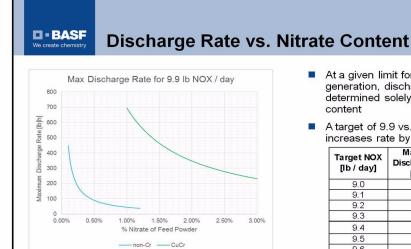
	Permit by Family	Products	Steady State Rate [lb/h]	Rate by Family [lb/h]	Rate Reduction
RC2	NOx generating	Cu 5020 P/ FT-BYD	300	100	67%
Non-Cr	NOx free	Cu 3818/3819 P	375	375	0%


- Products with NOx generation will be permit limited at 100 lb/h
 - → Administratively control nitrate content
- Keep copper carbonate (NOx-free) products on RC2 with current rates.
- Move Cu 0539 P to PPT or RC5.

RC2 Non-Cr Path Forward

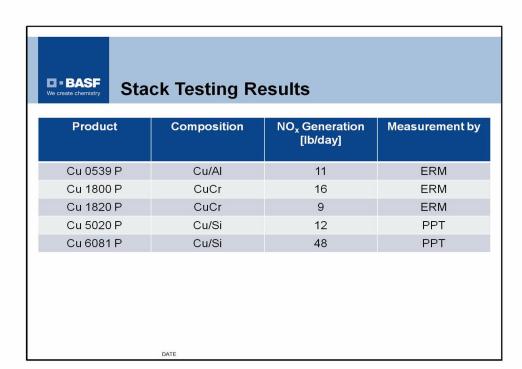
Scenario 2

- Move both Cu 5020 P and Cu 0539 P to RC5 (trimer)
 - The amount of nitrate testing to support both CuCr and non-Cr may be too much for the lab to handle
- Cu carbonate (NOx-free) product rates do not need to be changed



Methodology and Calculations

- 1. ERM and PPT reports lb NOX generated for a specific bag or tote for a product
- The nitrate content of that bag or tote is also measured by Elyria QC
- 3. A NO3 -> NOX conversion rate is calculated from these values
 - a. 93% for non-Cr
 - b. 6% for CuCr
- The average nitrate content for each product is obtained by measuring multiple samples (average is sometimes higher, sometimes lower than the specific ERM/PPT measured bag)
- This average nitrate content is then used to calculate an average NOX generation based on the reported NO3 -> NOX conversion rate from ERM/PPT
- 6. Product rates are calculated based on a target NOX generation of 9.9 lb NOX / day


$$Max.\ Discharge\ Rate = \frac{9.9\ lb\ NOx/_{day}*(1-\%LOI_{@cal.temp})}{\%NO_3*conversion}*\frac{46\ g\ NOx}{62\ g\ NO_3/_{mol\ NO_3}}$$

*Values are based on CuCr w/ 6% conversion, 25% LOI, and 2.00% NO3 unless otherwise noted

- At a given limit for NOX generation, discharge rate is determined solely by nitrate content
- A target of 9.9 vs. 9.0 lb / day increases rate by ~10%

Target NOX [lb / day]	Maximum Discharge rate [lb / h] 327		
9.0			
9.1	330		
9.2	334		
9.3	338		
9.4	341		
9.5	345		
9.6	349		
9.7	352		
9.8	356		
9.9	359		

